

MATHEMATICS SPECIALIST

Calculator-free

UNIT 1 Semester 1 2023

Marking Key

Marking keys outline the expectations of examination responses. They help to ensure a consistent interpretation of the criteria that guide the awarding of marks.

© Copyright Academic Assocaites Pty Ltd 2023.

Section One: Calculator Free

Question 1

49 is called 'prime-looking' because it is composite but not divisible by 2, 3 or 5.

49 is the first prime-looking number.

There are 25 prime numbers between 1 and 100 inclusive.

Use include-exclusion principle to show that there are only 3 $\ensuremath{\text{prime-looking}}$ numbers between 1 and 100 inclusive.

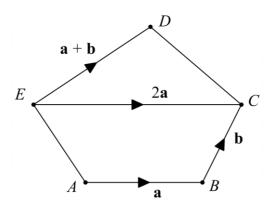
Solution	Specific behaviours	Point
Number divisible by $2 = \frac{100}{2} = 50$ Number divisible by $3 = \left\lfloor \frac{100}{3} \right\rfloor = 33$ Number divisible by $5 = \frac{100}{5} = 20$	 ✓ Determines number divisible by 2, 3 and 5. 	1.2.5
Divisible by 2 and 3 = $\left\lfloor \frac{100}{6} \right\rfloor$ = 16 Divisible by 3 and 5 = $\left\lfloor \frac{100}{15} \right\rfloor$ = 6 Divisible by 2 and 5 = $\frac{100}{10}$ = 10	 ✓ Determines number divisible by 2 and 3, 3 and 5 and 2 and 5. 	
Divisible by 2, 3 and 5 = $\left[\frac{100}{30}\right] = 3$ Divisible by 2, 3 or 5 = 50 + 33 + 20 - 16 - 6 - 10 + 3 = 74 Prime looking = 100 - 74 - 25 + 3 - 1 = 3	 ✓ Uses inclusion-exclusion principle to determines number divisible by 2, 3 or 5. ✓ Subtracts 74 and number of primes (25) from 100. ✓ Adds 3 (2, 3, 5 counted twice in primes and divisibility by 2, 3, 5) and subtracts 1 (1 is not prime- looking). (Students using a Venn diagram, should be awarded 2 marks for the entries in the Venn diagram, and the last three marks as above) 	

2

(5 marks)

(6 marks)

ABCDE is a pentagon, with $\overrightarrow{AB} = \mathbf{a}$, $\overrightarrow{BC} = \mathbf{b}$, $\overrightarrow{EC} = 2\mathbf{a}$ and $\overrightarrow{ED} = \mathbf{a} + \mathbf{b}$.



(a) Determine, in terms of \mathbf{a} and \mathbf{b} ,

(i) an expression for \overrightarrow{CD} .

SolutionSpecific behavioursPoint $\overrightarrow{CD} = \overrightarrow{CE} + \overrightarrow{ED}$ \checkmark Recognises $\overrightarrow{CE} = -\overrightarrow{EC} = -2a$ and
uses triangle rule.1.3.4 $\overrightarrow{CD} = -2a + a + b$ \checkmark Determines expression for \overrightarrow{CD} .1.3.4

(ii) an expression for \overrightarrow{AE} .

(2 marks)

(2 marks)

(2 marks)

Solution	Specific behaviours	Point
$\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CE}$	✓ States vector sum to determine	1.3.4
$\overrightarrow{AE} = \mathbf{a} + \mathbf{b} - 2\mathbf{a}$	\overrightarrow{AE} .	
$\overrightarrow{AE} = \mathbf{b} - \mathbf{a}$	✓ Determines expression for \overrightarrow{AE} .	

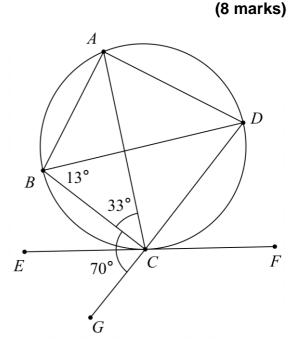
(b) Hence, state two geometric facts about the sides *CD* and *AE*.

Solution	Specific behaviours	Point
\overrightarrow{CD} and \overrightarrow{AE} are parallel and of equal length	 ✓ States the vectors are parallel. ✓ States they have the same length. 	1.3.2 1.3.12

ABCD is a cyclic quadrilateral.

EF is a tangent at *C*, and *DCG* is a straight line.

 $\angle BCA = 33^{\circ}$ $\angle GCB = 70^{\circ}$ $\angle DBC = 13^{\circ}$



- (a) Determine the following angles, giving reasons
 - (i) ∠*BAD*

(2 marks)

Solution		Specific behaviours	Point
∠BCD	\checkmark	Determines $\angle BAD$.	1.1.9
$= 110^{\circ}$ (angles on straight line)	\checkmark	Gives appropriate reason(s).	
$\angle BAD = 70^{\circ}$ (opposite angles in a			
cyclic quadrilateral are supplementary)			

(ii) ∠*BDA*

(2 marks)

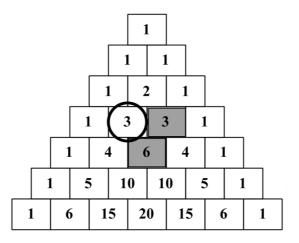
Solution	Specific behaviours	Point
$\angle BDA = 33^{\circ}$ (angles in same arc)	✓ Determines ∠ <i>BDA</i> .	1.1.8
	\checkmark Gives an appropriate reason.	

(b) Prove that AC passes through the centre of the circle, justifying your answer. (4 marks)

Solution		Specific behaviours	Point
$\angle ACD = 180 - 33 - 70$			1.1.6
$= 77^{\circ}$ (angles on straight line)	\checkmark	Determines $\angle ACD$.	
$\angle BAD = 77^{\circ}$ (angle in same arc)	\checkmark	Determines $\angle BAD$.	
$\angle ABC = \angle BAD + 13^\circ = 90^\circ$			
$\angle ADC = 90^{\circ}$ (opposite angles in a	\checkmark	Determines $\angle ADC$.	
cyclic quadrilateral are supplementary)			
$As \angle ADC = 90^\circ$ then ADC is a	✓	Explains why AC is the diameter.	
semicircle, and hence <i>AC</i> is the diameter.			

(6 marks)

The first seven rows of Pascal's triangle are given below.



In this example, the square of the circled number, is equal to sum of the two shaded numbers i.e. $3^2 = 3 + 6$.

(a) Write down the two numbers in Pascal's triangle that have a sum of 49. (2 mar

(2	marks)	

Solution	Specific behaviours	Point
$7^2 = 21 + 28$	 ✓ Continues Pascal's triangle, and determines at least two of the numbers in the sum. ✓ Determines all numbers and shows the sum. 	1.2.9

(b) Using combinations prove this pattern holds for any second element of any row. (4 marks)

Solution	Specific behaviours	Point
$\binom{n}{2} + \binom{n+1}{2} = \frac{n!}{2!(n-2)!} + \frac{(n+1)!}{2!(n-1)!}$ $= \frac{n(n-1)}{\frac{2!}{2!} + \frac{n(n+1)}{2!}}{n^2 - n + n^2 + n}$	 ✓ Correctly writes the two terms of the sum as combinations. ✓ Substitutes into combination formula. ✓ Expands factorials and simplifies. 	1.2.9
$=\frac{2!}{=n^2}$	• Expands brackets and arrives at n^2 .	

CALCULATOR FREE

(9 marks)

(a) Given ${}^{n}P_{r} = 90$ and ${}^{n}C_{r} = 45$, determine the value of *n* and the value of *r*. (4 marks)

Solution		Specific behaviours	Point
$90 = \frac{n!}{(n-r)!} (1)$ $45 = \frac{n!}{r! (n-r)!} (2)$	~	Sets up two equations using permutation and combination formulae.	1.2.3 1.2.8
$(1) \div (2) \Rightarrow \frac{90}{45} = r!$ $r! = 2 \Rightarrow r = 2$	~	Solves for <i>r</i> .	
Subtitute $r = 2$ into (1) $90 = \frac{n \times (n-1) \times (n-2)!}{(n-2)!}$ $n^2 - n - 90 = 0$	~	Substitutes $r = 2$ into either (1) or (2).	
(n+9)(n-10) = 0 $\therefore n = 10$	✓	Solves for <i>n</i> .	

(b) (i) Show that the number of different 9-letter arrangements of the word 'TENNESSEE' is $\frac{3}{4} \times 7!$.

(2 marks)

Solution	Specific behaviours	Point
Arrangements of TENNESSEE: $\frac{9!}{4! \times 2! \times 2!} = \frac{9 \times 8 \times 7!}{4 \times 3 \times 2 \times 2}$ $= \frac{3}{4} \times 7!$	 ✓ Determines arrangements of Tennessee using factorials. ✓ Correctly simplifies to required answer. 	1.2.3 1.2.4

 (ii) Lara believes that the number of different 11-letter arrangements of the word 'MISSISSIPPI' is greater than of the arrangements of the word 'TENNESSEE'. Is she correct? Justify your answer mathematically.
 (3 marks)

Solution		Specific behaviours	Point
Arrangements of MISSISSIPPI: 11!	~	Determines arrangements of	1.2.3
$\frac{11!}{4! \times 4! \times 2!}$		Mississippi using factorials.	1.2.4
$- \frac{11 \times 10 \times 9 \times 8 \times 7!}{}$	✓	Works towards simplifying factorial	
$\begin{array}{c} -4 \times 3 \times 2 \times 4 \times 3 \times 2 \times 2 \\ 11 \times 10 \end{array}$	1	expression. Concludes Lara is correct with a	
$=\frac{11\times10}{4\times4}\times7!$	•	valid justification.	
As $\frac{110}{16} > \frac{3}{4}$, then Lara is correct			
16 4			

6

CALCULATOR FREE

Question 6

(9 marks)

(3 marks)

(3 marks)

(a) A parallelogram *ABCD* is defined by vectors $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{AD} = \mathbf{b}$.

If $\mathbf{a} = (x - 1)\mathbf{i} + \mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} + (x^2 - 1)\mathbf{j}$, determine the value(s) of *x*, such that *ABCD* is a rectangle.

7

Solution	Specific behaviours	Point
$\mathbf{a} \bullet \mathbf{b} = 0$	✓ Indicates that $\mathbf{a} \cdot \mathbf{b} = 0$.	1.3.11
$2(x-1) + (x^2 - 1) = 0$		1.3.13
$x^2 + 2x - 3 = 0$	 Determines dot product 	
(x+3)(x-1) = 0		
x = -3, 1	\checkmark Solves for <i>x</i> .	

- (b) The angle between two vectors, **c** and **d** is 60°, with $|\mathbf{c}| = 4$, $|2\mathbf{c} \mathbf{d}| = 7$ and $|\mathbf{c}| < |\mathbf{d}|$.
 - (i) Show, with aid of a diagram, that $|\mathbf{d}| = 5$.

Solution	Specific behaviours	Point
$\begin{array}{c} \mathbf{c} & 8 & \mathbf{c} \\ \hline 7 & 60^{\circ} \\ \mathbf{2c} - \mathbf{d} \\ \end{array}$	 Draws diagram including and relevant side lengths. 	1.3.2 1.3.3 1.3.4 ngle,
$7^{2} = 8^{2} + \mathbf{d} ^{2} - 2 \times 8 \mathbf{d} \cos 60^{\circ}$ $49 = 64 + \mathbf{d} ^{2} - 8 \mathbf{d} $ $ \mathbf{d} ^{2} - 8 \mathbf{d} + 15 = 0$ $(\mathbf{d} - 3)(\mathbf{d} - 5) = 0$	Substitutes into cosine ruleRearranges and factorises.	
$ \mathbf{d} = 5 \text{ as } \mathbf{c} < \mathbf{d} $	Solves for d .	

(ii) Hence, or otherwise, determine the length of c + 2d.

(3 marks)

Solution		Specific behaviours	Point
$\mathbf{c} + 2\mathbf{d}$ \mathbf{d} 10 $\mathbf{c} - 120^{\circ}$ \mathbf{d}	~	Draws a diagram, or indicates in working that required angle is 120°.	1.3.2 1.3.3 1.3.4
$ \mathbf{c}+2\mathbf{d} $	✓	Substitutes into cosine rule.	
$= \sqrt{4^2 + 10^2 - 2 \times 4 \times 10 \cos 120^{\circ}}$,		
$ \mathbf{c} + 2\mathbf{d} = \sqrt{116 + 40}$			
$ \mathbf{c} + 2\mathbf{d} = \sqrt{156} = 2\sqrt{39}$	\checkmark	Determines length of $\mathbf{c} + 2\mathbf{d}$.	

MATHEMATICS SPECIALIST

Question 7

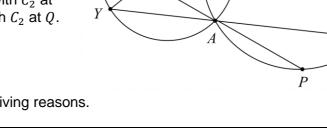
Two circles, C_1 and C_2 , intersect at A and B.

Two points *X* and *Y* are on C_1 .

The line *XA* extended intersects with C_2 at *P*, and *YB* extended intersects with C_2 at *S*.

The line *XB* extended intersects with C_2 at *R*, and *YA* extended intersects with C_2 at *Q*.

0 is the centre of C_2 .



 C_1

R

(a) Prove that $\angle PAQ = \angle SBR$, giving reasons.

Solution		Specific behaviours	Point
$\angle YAX = \angle YBX$ (angle in the same arc)	\checkmark	States that $\angle YAX = \angle YBX$ with	1.1.8
$\angle PAQ = \angle YAX$ and $\angle SBR = \angle YBX$		valid reason.	
(vertically opposite angles)	\checkmark	Uses vertically opposite angles to	
		show that $\angle PAQ = \angle YAX$ and	
$\therefore \angle PAQ = \angle SBR$		$\angle SBR = \angle YBX.$	
	\checkmark	Concludes that $\angle PAQ = \angle SBR$.	

(b) Prove the chords *PR* and *QS* are congruent.

(5 marks)

Solution	Specific behaviours	Point
Let $\angle PAQ = \angle SBR = \alpha$ $\angle POQ = 2\alpha$ and $\angle SOR = 2\alpha$ (angles at centre are twice angles at circumfrence)	 ✓ Uses angle at the centre is twice the angle at the circumference to determine ∠<i>POQ</i> and ∠<i>SOR</i>. 	1.1.7 1.1.10
$\angle POR = \angle POQ + \angle QOR$ $\angle POR = 2\alpha + \angle QOR$ Chord <i>PR</i> subtends $\angle POR$ $= 2\alpha + \angle QOR$	 ✓ Determines an expression for ∠POR. 	
$\angle QOS = \angle SOR + \angle QOR$ $\angle QOS = 2\alpha + \angle QOR$	✓ Determines an expression for $∠QOS$.	
Chord QS subtends $\angle QOS$ = $2\alpha + \angle QOR$ $PR \equiv QS$ as chords subtending equal angles at the centre of a circle have equal length	 ✓ States that the chords subtend the angle 2α + ∠QOR at the centre. ✓ Explains why PR and QS are congruent. 	e

End of Calculator Free Section

© Academic Associates

R

S

•0

Q

(3 marks)

 C_2

Х